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Use of slopelimiter techniques in traditional numerical
methods for multi-phase �ow in pipelines and wells
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SUMMARY

The aim of this paper is to show how simple and traditional methods for simulating multi-phase �ow
can be improved by introducing higher order accuracy. Numerical di�usion is reduced to a minimum by
using slopelimiter techniques, and better predictions of �ow rates and pressure are obtained. Slopelimiter
techniques, originally developed to achieve higher order of accuracy in Godunov’s method, is applied
to a method following a �nite element approach and a predictor–corrector shooting technique. These
methods are tested and compared to a Godunov-type scheme recently developed for multi-phase �ow.
Implementation of Godunov-type schemes for multi-phase �ow tends to be a complicated and chal-

lenging task. Introducing the slopelimiter techniques in the �nite element approach and the predictor–
corrector shooting technique is however simple, and provides an overall reduction of the numerical
di�usion. The focus is on using these techniques to improve the mass transport description, since this
is the main concern in the applications needed.
The presented schemes represent di�erent semi-implicit approaches for simulating multi-phase �ow.

An evaluation of higher order extensions, as well as a comparison by itself, is of large interest. We
present a model for two-phase �ow in pipelines and wells, and an outline of the numerical methods
and the extensions to second order spatial accuracy. Several examples motivated by applications in
underbalanced drilling are presented, and the advantages of using higher order schemes are illustrated.
Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Modelling and numerical simulation of two-phase �ow in pipelines had its origin in the
nuclear energy industry where advanced computer codes like TRAC [1], RELAP [2], and
CATHARE [3] were developed for design and safety studies. However, following the de-
velopment and growth of the petroleum industry, a need evolved for developing dynamic
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computer tools for prediction of multiphase hydrocarbon �ow in pipes. On the produc-
tion side, simulator tools like OLGA [4], PLAC [5] and TACITE [6–10] were developed
for design purposes regarding �ow of hydrocarbons in production=transport lines. However,
in parallel, there has also been developed a class of simulator tools for multi-phase �ow
occurring during exploration drilling and well interventions. Initially, the main drive here,
was the ‘kick’ scenario which can occur while drilling a well in an overbalanced condition.
If a high pressure zone is reached and an uncontrolled gas in�ux enters the well, immedi-
ate reaction is needed by the well crew to initiate certain procedures to bring the gas in�ux
safely out of the system. Examples of simulators developed for these purposes are RF-Kick
[11] and SIDEKICK [12, 13]. In the 1990s, the underbalanced drilling technology became
more popular. This concept consists of drilling with a mixture of injected gas and liquid.
This technique makes it possible to drill with a well pressure substantially lower than the
formation pressure, which has a positive e�ect on both operational time and productivity, see
[14]. However, the co-current existence of gas and liquid leads to a highly dynamic system
which calls upon improved simulator tools for training and design. Hence, the simulators de-
veloped for Kick applications were extended to handle the underbalanced drilling conditions,
e.g. RF-Dyna�odrill [15].
Dynamic computer tools for petroleum applications have mainly two objectives: They

should give an accurate prediction of downhole pressure and also predict the magnitude of
the surface=outlet �ow rates. The latter is important for separator design and safety issues
and numerical solvers with low numerical di�usion are needed. On the modelling side there
have been di�erent approaches. The two �uid model has been used in some models, e.g.
OLGA and PLAC, while the simpler drift �ux model has been used in models like TACITE,
RF-Dyna�odrill and SIDEKICK. The drift �ux model use one momentum equation for the
mixture opposite to the two �uid model which uses separate momentum equations. Use of
the drift �ux approach simpli�es to some extent the closure problem in the sense that mod-
els for the complex interface momentum terms are not needed. However, as the number of
equations is reduced by one when adopting the drift �ux approach, an additional equation
has to be supplied. It is common to include a model for gas slippage, which is an empirical
model that describes slippage between phases. In some applications, the drift �ux model is
simpli�ed further by excluding ‘sonic waves’. This is done by removing the acceleration terms
in the momentum equation (no pressure wave model). The dynamics in the system are then
mainly determined by mass transport and the forces exerted on the system through friction
and gravity. This is often su�cient for the applications needed.
In addition to the basic equations, a large number of closure laws (sub models) have to

be supplied. This includes complex PVT relations, model for �ow pattern description, gas
slippage and pressure losses (friction and gravity). Also dynamic modelling of temperature
development in the pipeline=well and the surroundings should be included. Development of
closure laws is often based on experiments and laboratory work, in addition to more basic
modelling.
The governing equations and the closure laws constitute a complex system of �rst

order partial di�erential equations which calls upon a numerical solution. The models are of
hyperbolic nature and include propagation of sound waves and mass (phase volume fraction)
waves. The sonic waves are known to have a much faster propagation than the mass waves
in the order of ten to thousand in magnitude. Hence, explicit schemes have traditionally been
ruled out due to the severe time step restriction induced by the CFL criterion.
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The implicit strategies used for solving the models can roughly be broken into three classes.
One approach has been direct linearization of the basic equations which then have been solved
by a band matrix solver. This approach was used in the �rst codes developed for the nuclear
industry but the OLGA simulator is also using this approach. The numerical methods used
were of �rst order accuracy and gave poor results in terms of numerical di�usion. A remedy
for this was to use front tracking of the gas volume waves where e.g. OLGA introduced front
tracking of the gas=liquid slugs.
In a di�erent approach used e.g. by RF-Kick and SIDEKICK, the basic equations were

solved by a predictor–corrector shooting technique although using di�erent approaches for
mass transport. Following this approach, there is no need for direct linearization of the model
equations and the closure laws. Numerical di�usion in the RF-Kick simulator has been reme-
died by local front tracking of the gas volume waves.
Finally, the last approach has been the introduction of Godunov-MUSCL type schemes

with the appearance of the TACITE code. These schemes have their origin within the aircraft
industry where numerical methods of high accuracy and low numerical di�usion are needed.
The accuracy of these schemes rules out the need for local front tracking approaches. However,
the original formulation of these schemes requires a detailed mathematical analysis of the
underlying model including construction of the appropriate Jacobi matrix and corresponding
eigenvalues and eigenvectors. As the basic equations and closure models for multiphase �ow
in petroleum applications tend to be very complex [8, 9, 16, 17], these constructions have to
be done by numerical means leading to larger numerical costs.
In the following, our intention is to present how ideas taken from the Godunov-MUSCL

type schemes can be used in more simple numerical approaches used within the gas–oil in-
dustry. The MUSCL approach is known to reduce numerical di�usion to a minimum, and
more accurate outlet �ow rate predictions are obtained. The implementation of these tech-
niques is simple when compared to the use of front tracking techniques. We have applied the
MUSCL technique in a predictor–corrector shooting method used in the RF-Kick simulator
and also in a newly developed scheme [18] which has some similarities with the OLGA
approach.
Finally, two-phase �ow modelling involves two kind of errors. Modelling errors caused by

‘inaccuracy’ in the closure laws and numerical errors caused by the way the basic equations
are discretized and solved. The �rst has always had high priority and a lot of work and
resources have been spent on developing closure laws as accurate as possible. In this paper,
we focus on the latter source of error and potential remedies for this. The model we have
chosen is the simple drift �ux model, since focus is on numerical aspects. In addition, we also
illustrate the di�erence between using the full drift �ux model and the simpli�ed no pressure
wave model.

2. DYNAMIC MODEL

A model describing one-dimensional two-phase �ow in pipelines consists of nonlinear par-
tial di�erential equations describing conservation of mass, momentum and energy for each
of the phases, see e.g. References [19, 20]. This model is obtained from cross-sectional av-
eraging of the Navier–Stokes equations and viscous stresses are reduced to empirical �ow
regime dependent terms describing wall and interface friction. In addition, the equations
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include complicated terms related to exchanges of mass, momentum and energy through the
internal interface or pipe wall. Volume forces due to gravity are essential for the development
of vertical �ow. This model is known as the two �uid model, and for readers interested in
applications we refer to References [4, 5, 10, 21–23]. The two �uid model is used in two main
areas. In nuclear reactor plants, focus has been on describing steam=water systems. Examples
of model formulations related to this area can be found in References [21–23]. However, the
two �uid model has also been used to describe hydrocarbon transport in pipelines in relation
to the oil industry. These model formulations are often more complex, due to presence of
more complex �uids. In addition the number of conservation laws are higher. In a drilling
situation one has to track both drilling �uid, produced oil=gas, produced water, drilled cuttings
and also handle the dissolution process of gas versus oil at high pressures=temperatures. In
addition, one has to have good models for the slippage between the phases. An example of a
more complex two-�uid formulation for petroleum production can be found in Reference [4],
but also the formulation presented there is simpli�ed.
The complexity of these models are on of the major reasons why there are so few examples

of use of Godunov-type schemes in this area. Since most Godunov-type schemes are based
on knowing the eigenstructure of the model it has been di�cult to work out proper numerical
schemes.

2.1. The drift �ux model

The focus of this work is investigation of the accuracy of numerical methods, and we limit
ourselves to consider gas–liquid �ow in vertical wells. The model we present is quite sim-
pli�ed. For a more general formulation we refer to Reference [8]. We assume that no mass
enters or leaves the system through the pipe walls, and we neglect mass transfer between the
phases. The simpli�ed mass conservation equations are then written as

@
@t
(�kA�k) +

@
@x
(�kA�kvk)=0; k= l; g (1)

where l; g represents the liquid and gas phase, respectively, � is the phase, volume fraction,
A is the cross-section area, � is the density and v is the velocity.
The fundamental two-�uid �ow model consists of separate momentum conservation equa-

tions for each phase, and includes complicated terms related to phase interaction. It is however
a common practice in two-phase modelling to introduce a mixture momentum phase in order
to omit modelling of momentum interface terms, see e.g. References [7, 9, 16]. This results in
the following equation for the mixture phase (drift �ux formulation):

@
@t
A(�l�lvl + �g�gvg) +

@
@x
A(�l�lv2l + �g�gv

2
g) + A

@
@x
p=−Aq (2)

where p is pressure and q=K + �mixg represents the external forces acting on the �uids; K
represents a friction pressure-loss term and �mixg represents gravitational forces; �mix = (�g�g+
�l�l) de�nes the mixture density. We further assume that there is no heat exchange in the
�uid, which makes the energy conservation equations redundant (isentropic conditions).
The governing partial di�erential equations for two-phase �ow are insu�cient to com-

pletely describe the physical processes involved. There are more unknowns than equations and
additional closure relations are required. The missing information in the mixture momentum
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equation must be replaced by empirical relations which provides information about phase
velocities and pressure loss terms. In addition, it is necessary to specify thermodynamic rela-
tions, generally derived by assuming a system in thermodynamic equilibrium (PVT models).
It is also necessary to provide physical boundary conditions for the system. In this context,
the �ow rates are assumed to be known at the inlet, and pressure is assumed to be speci�ed
at the outlet.
The closure relations usually involve complicated expressions, or they can be given in

tabular form based on experimental data. For computational purposes, we use the following
simple gas slip relation

vg=C0vmix + C1 (3)

where vmix = vg�g + vl�l de�nes the mixture velocity and C0 and C1 are empirical given
parameters. The friction pressure loss is modelled by the following simple relation:

K =
32vmix�mix

D2

where D is the inner diameter of the pipe and �mix =�g�g+�l�l de�nes the mixture viscosity.
A value of 5× 10−2 Pa s is adopted for the liquid viscosity, and 5× 10−6 Pa s for the gas
viscosity. The equation relating pressure and density for the gas phase is obtained by assuming
an ideal gas law

�g=
p
a2g

where ag ≈ 316 m=s is the velocity of sound in the gas phase. The liquid density model is
given by

�l=�0 +
p− p0
a2l

where constant compressibility is assumed. Here al ≈ 1000m=s is the velocity of sound in the
liquid phase and �0 is the density at a reference pressure p0.
The drift �ux model can also be simpli�ed further by removing the acceleration terms in

the momentum equation, see Reference [10]. This model will be referred to as the no pressure
wave model. The momentum equation will then be

@
@x
p=−K − �mixg (4)

This simpli�cation eliminates the sonic waves from the model. As mentioned in Refer-
ence [10], most transients of interest in the petroleum industry are related to mass trans-
port e�ects. If a vertical wall is considered, the pressure distribution is typically dominated
by hydrostatic pressures and eventual wall friction e�ects. Acoustic waves can occur dur-
ing rate changes or changes in the surface back pressure. However, these waves will only
give quite small pressure disturbances which are damped by viscous e�ects after a short
while.
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2.2. Characteristics of the model

By assuming a constant cross-sectional �ow area, the governing equations for two-phase �ow
can be written as a system of conservation laws

@u
@t
+
@f
@x
= q (5)

where

u=

⎛
⎜⎝

�l�l
�g�g

�l�lvl + �g�gvg

⎞
⎟⎠ ; f =

⎛
⎜⎝

�l�lvl
�g�gvg

�l�lv2l + �g�gv
2
g + p

⎞
⎟⎠ ; q=

⎛
⎜⎝
0
0

−q

⎞
⎟⎠

These equations can also be expressed in quasi-linear form

@u
@t
+A(u)

@u
@x
= q (6)

where A(u) is the Jacobi matrix of the �ux function versus the conservative variables. Some
details regarding the �ux functions are included in Appendix. This system of conservation laws
has been analysed by Th�eron [24] and Gavage [25]. The model was shown to be hyperbolic
in a physically reasonable region of parameters and three distinct and real eigenvalues were
obtained. Two of the eigenvalues (�1 and �3) correspond to rapid sonic waves (pressure
pulses) propagating in the upstream and downstream direction of the �uid �ow, while the last
eigenvalue (�2) is associated to mass (phase volume fraction) waves. Gavage showed that the
approximate eigenvalues of the system was �1 = vl − w, �2 = vg and �3 = vl + w, where the
sound velocity was approximated by:

w=
√

p
�g�l(1− C0�g)

She had to assume a constant liquid density and perform some linearization to obtain these
approximate algebraic expressions. Hence, obtaining algebraic expressions for a more complex
drift �ux model seems out of range, and numerical methods based on knowing eigenvalues=
eigenstructures must use numerical approximations for obtaining these. The eigenvalues cor-
responding to the pressure pulses are generally 10-100 times larger than the eigenvalue corre-
sponding to the mass transport, i.e. |�1|; |�3|�|�2|. Eigenvalues are essential in Godunov-type
schemes, and will be discussed further in Section 3.3.

3. NUMERICAL METHODS

The non-linear and coupled characteristic of the drift-�ux model makes it impossible to solve
the equations analytically, and a numerical solution strategy is required. The aim of a nu-
merical solver is to compute accurate and stable approximations of the �ow variables (e.g.
pressure, velocity, volume fractions, etc.). Numerical methods replace the continuous problem
represented by Equations (1) and (2) by a �nite set of discrete values. These values are
de�ned on a mesh composed of cells in the (x; t) plane. The pipe section of length [0; L]
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is divided into M segments [xi−1=2; xi+1=2], where x1=2 = 0 and xM+1=2 =L. We let xi denote
the centres of the segments, and the time levels are denoted tn. The spacing in the x and t
variables is denoted �x and �t.
A numerical method is explicit if the discretized �ow variables at the previous time level

(tn) are used to calculate the �ow variables at the new time level (tn+1). The time step is
limited by the CFL condition

�t6
�x

max(�1; �2; �3)

In many drilling situations, such as gas-kick scenarios and underbalanced drilling operations,
the dynamic behavior lasts in order of hours. The CFL condition will therefore imply large
computational time if explicit methods are used to simulate these situations.
Fully implicit methods are not limited by the CFL condition, but they have the disadvantage

of smearing out discontinuities. The methods described in this section are semi-implicit in
the sense that pressure calculations are based on implicit solution techniques, and the mass
transport is treated explicit. The time step is thus limited by a CFL condition depending on
the mass transport signal (�x=�2). Some of the solution details are thus sacri�ced to increase
computational e�ciency.
The rest of this chapter is organized as follows: First, a numerical method based on a

�nite element approach is presented. This method results in an integration of the momentum
equation along characteristics. The second method is a predictor–corrector shooting technique,
and the last method is a semi-implicit version of the conservative Roe-scheme, see References
[9, 26, 27]. The extension to second order spatial accuracy is discussed at the end of the
chapter.

3.1. A �nite element approach

In this section the solution strategy for a recently developed semi-implicit method [18] is
presented. The solution process requires a rearrangement of the governing equations, which
involve introduction of total mass �ux F =A(�l�lvl + �g�gvg), and centre of mass velocity
vcom =F=A�mix. To simplify future calculations, we also rede�ne the friction factor by the
relation K→ K̃F . By adding the mass conservation equations, we obtain the following equation
for conservation of total mass:

A�
@p
@t
+
@F
@x
=0 (7)

where �= @�mix=@p. Following the outline in Reference [18], the momentum equation (2) is
simpli�ed as

@F
@t
+
@vcomF
@x

+ A
@p
@x
+ K̃F =−A�mixg (8)

Here, terms involving (vl − vg) is neglected.
To proceed, we de�ne a test function �i which is constant over segment i, and zero else-

where. We then integrate Equation (7) with the test function �i over the space and time strip
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�= [0; L]× [tn; tn+1]. Integration by parts yields∫ L

0
[A�i�p]

tn+1
tn dx −

∫
�
pA�

@�i
@t
d� +

∫ tn+1

tn
[�iF]L0 dt −

∫
�
F
@�i
@x
d�=0

which is reduced to an equation of the form

�aip
n+1
i + �bi (F

n+1
i+1=2 − Fn+1i−1=2)= �

c
i (9)

where �ai , �
b
i and �

c
i are coe�cients given from the integration.

We then multiply Equation (8) with a space–time test function �. Integration by parts over
� yields

∫ L

0
[F�]tn+1tn dx +

∫ tn+1

tn
[vcomF�]L0 dt −

∫
�
F(�t + vcom�x − �K̃) d�

+
∫
�
A
@p
@x
� d�=−

∫
�
A�mixg� d� (10)

We then take the test function � to ful�ll the adjoint equation

�t + vcom�x=0

which gives a test function on the form

�(x; t)=�(x − vcom(t − tn+1))
We then de�ne the following left and right basis functions

�L(x; t)=
1
�x
[(xi+1=2 − x) + vcom(t − tn+1)]

and

�R(x; t)=
1
�x
[(x − xi−1=2)− vcom(t − tn+1)]

where xi−1=2 + vcom(t − tn+1)¡x¡xi+1=2 + vcom(t − tn+1) and tn¡t¡tn+1. The centre of mass
velocity is evaluated at the cell boundaries at time tn. We evaluate (10) by applying � equal
to the left and right basis function respectively on the domain speci�ed above, and zero
elsewhere. The following two equations are then obtained:

�aiLF
n+1
i−1=2 + �

b
iLp

n+1
i−1=2 + �

c
iLp

n+1
i = �diL (11)

�aiRF
n+1
i+1=2 + �

b
iRp

n+1
i+1=2 + �

c
iRp

n+1
i = �diR (12)

where pn+1i−1=2 and p
n+1
i+1=2 are pressures evaluated at the left and right boundary, respectively.

The coe�cients in Equations (11) and (12) follow from integration of (10).
We can now eliminate pn+1i from Equations (11) and (12) by using Equation (9). The

following equations are then obtained:

�̃aiLF
n+1
i−1=2 + �

b
iLp

n+1
i−1=2 + �̃

c
iLF

n+1
i+1=2 = �̃

d
iL (13)
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and

�̃aiRF
n+1
i−1=2 + �

b
iRp

n+1
i+1=2 + �̃

c
iRF

n+1
i+1=2 = �̃

d
iR (14)

Using Equations (13) and (14), Fn+1i−1=2 and F
n+1
i+1=2 can be expressed in terms of p

n+1
i−1=2 and

pn+1i+1=2

Fn+1i−1=2 = 	
a
iLp

n+1
i−1=2 + 	

b
iLp

n
i+1=2 + 	

c
iL (15)

Fn+1i+1=2 = 	
a
iRp

n+1
i−1=2 + 	

b
iRp

n
i+1=2 + 	

c
iR (16)

We assume that the �ux and pressure are continuous at the cell boundaries which gives the
following linear system

aj;0pn+1j−1=2 + aj;1p
n+1
j+1=2 + aj;2p

n+1
j+3=2 = bj; j=1; : : : ; M − 1 (17)

This system, together with the physical boundary conditions, forms a tridiagonal matrix which
is solved using direct substitution. The coe�cients in Equations (13)–(17) are functions of the
coe�cients in Equation (9) and Equations (11)–(12). When the pressure values are known,
the left and right �uxes are calculated by using Equations (15) and (16). Equation (9) is then
used to calculate the average cell pressure pn+1i .
The next task is to update the mass distribution, based on pressure and �ux at the new time

level. This procedure starts at the inlet, where mass rates are given by the physical boundary
conditions. The mass distribution is then updated sequentially until the outlet is reached:

1. Temporary velocities v∗k; i+1=2, k= l; g, are calculated by utilizing Equation (3), the down-
stream �ux Fn+1i+1=2, and the old volume fraction.

2. The mass in each cell (Mk; i) is updated for each phase according to

Mn+1
k; i =M

n
k; i +�tf

n+1
k; i−1=2 −�tfn+1k; i+1=2; k= l; g

where the downstream �ux for each phase (fk; i+1=2) is composed by using the interme-
diate velocity and the upstream volume fraction and density.

3. The new masses are used to calculate �nal volume fractions �n+1k; i ; k= l; g. Step 1 is then
repeated, and �nal velocities are determined.

3.2. A predictor–corrector shooting technique

A predictor–corrector approach makes it possible to solve Equations (1) and (2) without direct
linearization of the governing equations and the closure relations. The method described in
this section was originally developed to handle gas-kick situations [11], but can also be used
for general dynamic two-phase �ow simulations. We give a brief description of the solution
strategy.
The no pressure wave model is applied here, i.e. the acceleration terms related to the sonic

waves are neglected from the momentum equation:

@
@x
p=−q (18)

The errors introduced by this approximation are discussed in Section 4.3. The solution algo-
rithm is initiated by making a guess for the inlet pressure. Mass rates at the inlet are given
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by the physical boundary conditions. A predictor–corrector algorithm is then used to solve
Equations (18) and the mass conservation equations (1), which determines the downstream
�ow variables in the �rst cell (see the description below). This also determines the upstream
variables for the next cell, by imposing continuity of pressure and mass rates over the cell
boundary. This procedure is sequentially repeated for each cell until the outlet is reached. The
calculated outlet pressure is then compared to the pressure given by the physical boundary
condition. The inlet pressure is iterated until the calculated outlet pressure has converged. It
should be mentioned that a similar approach was pursued by Nickens [12], although he did
not neglect the pressure pulses.
We now give a short description of the predictor and corrector steps in the algorithm. The

predictor step starts by using a discretized version of Equation (18) to calculate a temporary
downstream pressure at the new time level in cell i (based on old variables):

p∗
i+1=2 =p

n+1
i−1=2 −�xqni (19)

The known upstream pressure is either given by the updated solution in the upstream cell, or
by the guess made for the inlet pressure. The average cell pressure is then given by

p∗
i =

p∗
i+1=2 + p

n+1
i−1=2

2
(20)

The updated pressure is then used to calculate the mass distribution. To proceed, a guess
is made for the downstream mixture velocity, v∗mix; i+1=2, and the temporary mass in cell i is
calculated by

M ∗
k; i=M

n
k; i +�tf

n+1
k; i−1=2 −�tf∗

k; i+1=2; k= l; g (21)

where the downstream �ux is a function of v∗mix; i+1=2. The following volume balance equation
is then solved by iteration, which determines the downstream mixture velocity:

g(v∗mix; i+1=2)≡V ∗
i (v

∗
mix; i+1=2)− A�x=0 (22)

where

V ∗
i (v

∗
mix; i+1=2)=

M ∗
l; i

�l(p∗)
+

M ∗
g; i

�g(p∗)

The corrector step consists of repeating the steps (19)–(22) using updated �ow variables.
This procedure is continued until the �ow variables in the cell have converged. The variables
pn+1i+1=2, p

n+1
i , vn+1mix; i+1=2, M

n+1
l; i and Mn+1

g; i are then determined.

3.3. A Godunov-type scheme

The numerical approach described in this section departs from the schemes outlined in the
previous sections, as the system of conservation laws (5) is solved in a fully coupled manner.
A conservative explicit �nite volume scheme for Equation (5) has the form

Un+1i =Uni − �t
�x
(Fni+1=2 − Fni−1=2) + �tQn

i (23)

where Fni+1=2 is an approximation of the �ux f(u(x; t)) at xi+1=2, and Q
n
i = q(Uni ). For an

introduction to numerical schemes for conservation laws, see e.g. References [28–30]. We
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propose a scheme based on a semi-implicit approach described by Faille et al. [9], and the
numerical Roe scheme, see References [26, 27]. The traditional Godunov scheme involves
the exact solution of a large number of Riemann problems, and is a complicated and time
consuming process. Simpli�cation of this method was therefore introduced by the development
of approximate Riemann solvers. Roe’s approximate Riemann solver is based on the solution
of the linearized Riemann problem

@u
@t
+ Â(Uni ;U

n
i+1)

@u
@x
=0; u(x; 0)=

{
Uni for x6xi+1=2

Uni+1 for x¿xi+1=2
(24)

where the matrix Â(Uni ;Uni+1) is an approximation of the Jacobi matrix, and must satisfy the
following conditions:

(i) Â(Uni ;Uni+1) has only real eigenvalues and is diagonalizable.
(ii) f(Uni+1)− f(Uni )= Â(Uni ;Uni+1)(Uni+1 −Uni ).
(iii) Â(Uni ;Uni+1)→A(u) as Uni+1;U

n
i → u.

Condition (i) ensures hyperbolicity, condition (ii) is needed to achieve conservation across
discontinuities and condition (iii) ensures consistency with the exact Jacobian. The numerical
�ux for the Roe scheme is then given by

Fni+1=2 =
1
2(f(U

n
i ) + f(U

n
i+1))− 1

2 |Âni+1=2|(Uni+1 −Uni ) (25)

where Âni+1=2 = Â(U
n
i ;Uni+1) and |Âni+1=2| is the matrix which has the same eigenvectors as

Âni+1=2, and eigenvalues equal to the absolute values of the eigenvalues of Â
n
i+1=2. In order to

construct a Roe matrix Â, we �rst de�ne the Jacobian 	A≡A(Uni+1=2), where Uni+1=2 = 1
2(U

n
i +

Uni+1). This matrix satis�es (i) and (iii). In order to make it satisfy (ii), we follow the
approach described in References [16, 27]. We �rst decompose the Jacobian 	A as 	A= 	R 	� 	R−1,
where 	R is the right eigenvector matrix, and 	� is the matrix having the eigenvalues of 	A
at its diagonal. Next, we determine a diagonal matrix �̂ such that 	R�̂ 	R−1�U=�f , where
�U=Uni+1 −Uni and �f = f(Uni+1)− f(Uni ). The Roe matrix Â is then de�ned by

Â= Â(Uni ;U
n
i+1)=

⎧⎨
⎩
	R�̂ 	R−1 if Uni �=Uni+1
	R 	� 	R−1 if Uni =U

n
i+1

(26)

An implicit version of the numerical scheme (23) is obtained (see Reference [9]) by evalu-
ating the numerical �ux given by Equation (25) at the new time level: Fn+1i+1=2 =F(U

n+1
i ;Un+1i+1 ).

We also evaluate the source term at the new time level: Qn+1
i =Q(Un+1i ). These expressions

are then linearized by using a �rst order Taylor expansion with respect to Uni and Uni+1:

F(Un+1i ;Un+1i+1 )≈ F(Uni ;Uni+1) +
@F(Uni ;Uni+1)

@Uni
(Un+1i −Uni )

+
@F(Uni ;Uni+1)
@Uni+1

(Un+1i+1 −Uni+1) (27)
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Q(Un+1i )≈Q(Uni ) +
@Q(Uni )
@Uni

(Un+1i −Uni ) (28)

By assuming that |Âni+1=2| is constant, the expressions in Equation (27) becomes

@F(Uni ;Uni+1)
@Uni

≈ 1
2
(Ani + |Âni+1=2|) (29)

@F(Uni ;Uni+1)
@Uni+1

≈ 1
2
(Ani+1 − |Âni+1=2|) (30)

where Ani =A(Uni ).
Faille et al. [9] proposed a way to modify this scheme in order to keep the accuracy

on the slow wave (�2), while maintaining implicit treatment of the fast waves (�1 and �3).
Equations (29) and (30) are replaced by

@F(Uni ;Uni+1)
@Uni

≈ 1
2
(Ãni + | ˜̂Ani+1=2|) (31)

@F(Uni ;Uni+1)
@Uni+1

≈ 1
2
(Ãni+1 − | ˜̂Ani+1=2|) (32)

where Ã has the same eigenvectors as A, but the eigenvalues are replaced by �̃1 = �1, �̃2 = 0
and �̃3 = �3. The matrix

˜̂A is obtained in the same manner. The scheme is then divided into
two stages

1. An explicit step


U∗
i =−�t

�x
(F(Uni ;U

n
i+1)− F(Uni−1;Uni )) +�tQn

i

2. An implicit step which will stabilize the explicit solution

− �t
2�x

[Ãni−1 + | ˜̂Ani−1=2|]
Ui−1 +
[
I+

�t
2�x

(| ˜̂Ani+1=2|+ | ˜̂Ani−1=2|)−�tDQn
i

]

Ui

+
�t
2�x

[Ãni+1 − | ˜̂Ani+1=2|]
Ui−1 = 
U∗
i

where 
Ui=Un+1i −Uni , I is the identity matrix and DQn
i = @Q(Uni )=@Uni .

The application of the numerical scheme at the boundary cells i=1 and M , requires the
numerical �ux values F1=2 and FM+1=2. These �uxes cannot be calculated directly, as U0 and
UM+1 are outside the computational domain. The information which is not given by the phys-
ical boundary conditions must be supplied by additional information. We have used a ghost
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cell technique, which is based on de�ning external cells (ghost cells) outside the computa-
tional domain. The values in these cells are calculated by combining the physical boundary
conditions, and information obtained from the wave structure of the Riemann problems at the
boundaries, see Reference [31].

3.4. Second order schemes

The high amount of numerical di�usion in �rst order schemes makes it impossible to re-
construct sharp fronts accurately. It is on the other hand well known that classical higher
order linear schemes produce spurious oscillations in the vicinity of large gradients. This has
lead to the introduction of total variation diminishing (TVD) schemes. TVD schemes are
of high order, and have the property of non-increasing total variation. Unphysical oscilla-
tions are thus avoided. The methods were originally developed for scalar one-dimensional
problems, but a large number of successful applications to systems of conservations laws
exist [28, 30]. In this paper we use a slopelimiter, or MUSCL (abbreviation for Monotone
Upstream-centred Scheme for Conservation Laws) technique, which ful�lls the TVD condi-
tion. The MUSCL=slopelimiter method was �rst introduced by van Leer [32, 33], and is based
on a piece-wise linear reconstruction of the cell averages.
We have chosen to represent the cell averages in terms of the primitive variables

p=(p; �g; vl). A linear reconstruction is then given by

Pi(x)=Pi + (x − xi)�i ; x∈ [xi−1=2; xi+1=2] (33)

where �i denotes a suitable (limited) slope constructed from the cell averages Pi.
There exists a variety of limiters which can be used to calculate the slopes �i. MINMOD

is the most di�usive limiter, while SUPERBEE is known to be over-compressive. We use
the smooth VANLEER limiter, which lies between MINMOD and SUPERBEE. For further
details on TVD methods and MUSCL=slopelimiter type high order methods, we refer to
References [28–30].
The numerical methods described in Sections 3.1–3.3 use the extrapolated primitive vari-

ables at the cell boundaries for evaluation of the �uxes. The extrapolated variables are
given by

Pi−1=2;+ =Pni − �x
2
�i ; Pi+1=2;−=Pni +

�x
2
�i

see Figure 1.
The �nite element approach and the predictor–corrector shooting technique use the extrapo-

lated values for pressure and volume fraction (�i−1=2;+, �i+1=2;−, pi−1=2;+, pi+1=2;−) to evaluate
the mass transport �uxes. The velocity at the boundaries is found by iteration of the mass
conservation equations. The Godunov-type scheme is extended to second order by using the
extreme values Ui+1=2;+ and Ui+1=2;− in the numerical �ux:

Fi+1=2 = 1
2(f(Ui+1=2;−) + f(Ui+1=2;+))− 1

2 |Âi+1=2|(Ui+1=2;+ −Ui+1=2;−) (34)

where Âi+1=2 = Â(Ui+1=2;−;Ui+1=2;+). The extreme values Ui+1=2;+ and Ui+1=2;− are calculated
by converting the extrapolated primitive variables.
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Pi

Pi-1/2,+

Pi(x)

x0

Pi+1/2,-

x/2

Figure 1. Piece-wise linear reconstruction of the primitive variables in cell i.

4. NUMERICAL RESULTS

The examples in this section are motivated by dynamical e�ects present in underbalanced
drilling operations. We have chosen test scenarios where gas and liquid are injected at the
bottom of the well. Gas is injected in order to obtain reduced hydrostatic pressure, leading to
an underbalanced condition. The main variables of interest in such operations are the bottom
hole pressure and the outlet �ow rates. Control of the bottom hole pressure is important in
order to maintain the underbalanced condition, and the prediction of the outlet �ow rates
is crucial for proper separator design. We wish to illustrate how numerical di�usion a�ects
prediction of these variables and show the advantage of using second order schemes. The well
con�guration consists of a 1000m deep vertical well with a 0:1m inner diameter. The outlet
pressure is kept constant equal to 6bar. The grid length is 20m and the time step is 1s. In the
following, the �nite element approach is abbreviated FE, and the predictor–corrector shooting
technique is abbreviated PCS. We have chosen to use the second order Godunov type scheme
as a reference case. This scheme is then compared with the �rst and second order versions of
the predictor corrector shooting technique and the �nite element approach. One should expect
that the �rst order version of all the schemes will basically give the same results, since all of
them will typically be �rst order upwind schemes in this case. Hence, we have not included
results for the 1st order Godunov scheme. The intention of the comparison is to show that
the �rst order versions of the simpler predictor scheme and FE approach have problems with
numerical di�usion when comparing with the more accurate results obtained by the second
order Godunov scheme. However, we see that more accurate results can be obtained by using
the slope limit approach in these simpler=traditional schemes. The second order versions of
these schemes give results that are quite comparable with the second order Godunov scheme.

4.1. Example 1

We consider a well which is initially �lled with stagnant liquid. Gas and liquid are then
injected at the bottom of the well. The �ow rates are increased to 7:5 kg=s for liquid and
0:05kg=s for gas during a 10s period. For simplicity, a no-slip condition is used, i.e. C0 = 1 and
C1 = 0 in Equation (3). The no-slip condition is physical reasonable when the dispersed bubble
�ow pattern is present. Figures 2–4 show the bottom hole pressure and the outlet �ow rates
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Figure 2. Bottom hole pressure as function of time in example 1.
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Figure 3. Outlet gas mass �ow rate as function of time in example 1.
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Figure 4. Outlet liquid mass �ow rate as function of time in example 1.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:723–745



738 R. J. LORENTZEN AND K. K. FJELDE

when the di�erent numerical schemes are used. Figure 5 shows the gas volume distribution
at t=250, 500, 750 and 1000 s.
The injection of gas in the drillstring causes the bottom hole pressure to decrease. The

gas expands while it propagates towards the surface, and forces the liquid in front of the gas
out of the well. Hence, a sharp peak in the outlet liquid rate is seen just prior to the gas
is reaching the surface, see Figure 4. We observe that the second order schemes predict a
quite sudden presence of gas at surface, see Figure 3. The �rst order schemes have problems
with numerical di�usion which tend to smear out the sharp transition zone between the two
phase mixtures and the liquid region in front of the migrating gas, see Figure 5. Hence, they
will predict gas at surface at an earlier time, and the �nal steady state rates will be reached
later. We also observe that the second order schemes are able to reconstruct the sharp peak
in the liquid rate, while the �rst order schemes predict a much lower maximum value of this
peak. This example shows that the second order version of the predictor corrector scheme and
the FE approach give results that are quite comparable with the second order version of the
Godunov scheme. Implementing slope limiter techniques in these simpler schemes, seems to
have a very positive e�ect on reducing numerical di�usion related to mass transport. There
is a small di�erence in the estimated steady-state bottom hole pressure, which is due to the
di�erent approaches used to treat the numerical boundary conditions. The numerical di�erences
are however relatively small when compared to model error in the closure relations, see e.g.
Reference [34].
In order to illustrate the relationship between the number of cells and the numerical dif-

fusion, we show the predicted mass �ow rates at the outlet when the spatial grid length
is reduced from 20 to 2 m. The simulation is done using the �rst and second order �nite
element scheme. Figure 6 shows the simulated outlet rates of gas and liquid. The �gure
present the di�erence in the predicted results when using a �rst order scheme versus a second
order scheme when using a grid length of 20m. It also shows that maximum peaks in the �ow
rates are predicted to be even higher if we reduce the cell length from 20 to 2 m (using the
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Figure 5. Gas volume fraction in example 1. The �gures shows the distribution of gas in the well at
times t=250, 500, 750 and 1000 s. The �rst order scheme smears out the gas distribution.
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Figure 6. Outlet gas rate (left) and liquid rate (right) versus time in example 1.
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Figure 7. Bottom hole pressure as function of time in example 2.

second order FE scheme). This case also shows the importance of choosing a proper discretiza-
tion with respect to the accuracy required. A smaller grid will increase the accuracy of the
results. We observe that for the �ne grid calculations, some oscillations can be observed. These
oscillations occurring at approximately 15 min are a consequence of the dynamics generated
by the sudden rate variations at the outlet. We note that more non-di�usive fronts can also
be obtained by choosing a less di�usive slope limiter, e.g. SUPERBEE.

4.2. Example 2

This example is identical to example 1, except that the slip parameters C0 = 1:2 and C1 = 0:55
are used. These parameter values are approximations of the parameters used to calculate the
gas velocity in slug �ow. Figures 7–9 show the bottom hole pressure and the outlet �ow rates.
Figure 10 shows the gas volume fraction at t=250, 500 and 750s. We see that the gas phase

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:723–745



740 R. J. LORENTZEN AND K. K. FJELDE

0 2 4 6 8 10 12 14 16
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Time (min)

G
as

 m
as

s 
fl

o
w

 r
at

e 
(k

g
/s

)

Godunov 2nd order
PCS 2nd order
PCS 1st order

0 2 4 6 8 10 12 14 16
0

0.01

0.02

0.03

0.04

0.05

0.06

Time (min)

G
as

 m
as

s 
fl

o
w

 r
at

e 
(k

g
/s

)

Godunov 2nd order
FE 2nd order
FE 1st order

Figure 8. Outlet gas mass �ow rate as function of time in example 2.
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Figure 9. Outlet liquid mass �ow rate as function of time in example 2.

is moving with a higher speed compared to example 1. The results are again satisfactory as the
predictor–corrector shooting technique and the �nite element approach are able to reconstruct
the results obtained by the Godunov-type scheme. The irregularity in the liquid mass �ow
rate in the Godunov scheme, see Figure 9, is due to numerical inaccuracies related to the
transition between two- and one-phase �ow. The increased liquid velocity is amplifying this
problem when compared to example 1.

4.3. Example 3

As a �nal example, we wish to investigate the ability to simulate a complex scenario caused
by a shut down of the pumps. This leads to a situation where the injected gas migrates towards
the surface, and liquid is forced in the downward direction (countercurrent �ow). We use the
same values for the slip parameters as in the previous example.
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Figure 10. Gas volume fraction in example 2. The curves represent t=250, 500 and 750 s.
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Figure 11. Bottom hole pressure and gas mass �ow rate at the outlet as function of time in example 3.

The well is initially �lled with stagnant liquid. The injection rates are then increased to
7:5 kg=s for liquid and 0:15 kg=s for gas during a 10 s period. The injection rates are kept
constant in 200 s before the injection stops. The liquid rate at the outlet is now dropping to a
value close to zero, see Figure 12. This leads to reduced wall friction which gives a sudden
reduction in the bottom hole pressure at this time, see Figure 11. The sudden variations of
mass �ow rates at start-up and shut-down generate pressure pulses which are responsible for
temporary oscillations of the �ow variables. However, the oscillations are quickly damped by
the frictional forces, and the amplitude is relatively small, see Figure 12 (right). The pressure
pulses play therefore a minor role in these examples, and use of the no pressure wave model
will not lead to large errors in e.g. an underbalanced drilling situation.
The injected mass �ow rates are shut down in 1000 s, and during this period gas expands

and migrates towards the surface. This gives a decrease of the bottom hole pressure, while the
liquid mass �ow rate in front of the gas increases. The gas reaches the outlet at approximately
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Figure 12. Outlet liquid mass �ow rate as function of time in example 3. The right plot shows oscillations
occurring in the vicinity of sharp gradients.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Length (m)

G
as

 v
o

lu
m

e 
fr

ac
ti

o
n

Godunov 2nd order
PCS 2nd order
PCS 1st order

Figure 13. Gas volume fraction in example 3. The curves represent t=500, 1000 and 1500 s.

17 min, and the expansion of gas is now forcing the liquid in a downward direction. The
injection of liquid is resumed after 1200 s, and the rate is increased to 2kg=s. The gas is now
transported out of the well, and the hydrostatic pressure increases. Figure 13 shows the gas
volume distribution at t=500, 1000 and 1500 s.

5. CONCLUSIONS

The focus of this paper has been to show how traditional and simple numerical methods
for simulation of multiphase hydrocarbon �ow in pipelines, can be extended to second order
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spatial accuracy. We have given an outline of modelling of one-dimensional two-phase �ow
in pipelines and wells, with emphasize on the drift �ux model and the no pressure wave
model. In addition, we have presented the basic solution strategies for the numerical methods
discussed herein.
There is a need for accurate and reliable tools for prediction of hydrocarbon �ow in

pipelines and wells. We have shown how the non-di�usive MUSCL technique, originally
developed to achieve higher order of accuracy in Godunov’s method, can be integrated in
simple semi-implicit schemes following the �nite element technique and predictor–corrector
shooting technique. These methods do not require numerical calculation of the Jacobi matrix
and the corresponding eigenvalues and eigenvectors, and complex boundary treatment is not
necessary. The MUSCL technique gives an overall reduction of the numerical di�usion, and
complicated front tracking remedies are avoided.
We have made a rough estimate of the computational cost needed by the di�erent numeri-

cal approaches, and conclude that the �nite element approach has lowest cpu consume. The
predictor–corrector shooting technique is somewhat slower due to the time consuming itera-
tions needed on a local (within each box) and global (in order to match the outlet pressure)
level. The traditional Godunov scheme su�ers from time consuming numerical calculations
of the Jacobi matrix, and can therefore not match either the �nite element approach or the
predictor–corrector shooting technique. These considerations substantiate the bene�ts of incor-
porating the MUSCL technique in more simple/traditional schemes.
From a modelling point of view, we have shown that the simpli�cations introduced by the

no pressure wave model are of minor importance when the transients of interest are related
to transport of mass (e.g. underbalanced drilling operations). The oscillations introduced by
the pressure pulses have a small amplitude, and are only present in short periods following
sudden rate variations.
We have presented several relevant examples where the Godunov-type method is compared

with �rst and second order versions of the �nite element method and the predictor–corrector
shooting technique. The results show that numerical di�usion is reduced, and the second order
versions of the schemes produce almost identical results.

APPENDIX

In this appendix we show some of the details in the �ux functions written in terms of
conservative variables. As shown in Section 2.2, the governing equations for two-phase �ow
can be written as a system of conservation laws

@u
@t
+
@f
@x
= q

The �ux functions in terms of conservative variables can be written

f1 =
(1− C0)�lu3 + C0u1u3 − C1�lu2
(1− C0)�l + C0u1 + C0u2

f2 =
u2(C1�l + C0u3)

(1− C0)�l + C0u1 + C0u2

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:723–745



744 R. J. LORENTZEN AND K. K. FJELDE

f3 =
u2(C1�l + C0u3)2

((1− C0)�l + C0u1 + C0u2)2 +
u1((1− C0)�lu3 + C0u1u3 − C1�lu2)2
((1− C0)�lu1 + C0u21 + C0u2u1)2

+
�1a2gu2
�l − u1

The �ux functions and the corresponding Jacobi matrix A(u) are very complex, and we have
not found it reasonable to go into more details. In fact, in order to calculate the eigenvalues
of A(u), it is necessary to express the hyperbolic system in terms of primitive variables

A
@V
@t
+ B

@V
@x
=C

where V is a vector containing physical variables. The eigenvalues then satis�es the following
equation

det(B− �A)= 0
Due to long calculations, this analysis is not included here, but more details can be found
in References [24, 25]. The closure laws that have been used in this paper are very simple
compared to what is used in practice. Both the slip relation and the density models are usually
much more complex. This would complicate the analysis even more.
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