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Use of slopelimiter techniques in traditional numerical
methods for multi-phase flow in pipelines and wells
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SUMMARY

The aim of this paper is to show how simple and traditional methods for simulating multi-phase flow
can be improved by introducing higher order accuracy. Numerical diffusion is reduced to a minimum by
using slopelimiter techniques, and better predictions of flow rates and pressure are obtained. Slopelimiter
techniques, originally developed to achieve higher order of accuracy in Godunov’s method, is applied
to a method following a finite element approach and a predictor—corrector shooting technique. These
methods are tested and compared to a Godunov-type scheme recently developed for multi-phase flow.

Implementation of Godunov-type schemes for multi-phase flow tends to be a complicated and chal-
lenging task. Introducing the slopelimiter techniques in the finite element approach and the predictor—
corrector shooting technique is however simple, and provides an overall reduction of the numerical
diffusion. The focus is on using these techniques to improve the mass transport description, since this
is the main concern in the applications needed.

The presented schemes represent different semi-implicit approaches for simulating multi-phase flow.
An evaluation of higher order extensions, as well as a comparison by itself, is of large interest. We
present a model for two-phase flow in pipelines and wells, and an outline of the numerical methods
and the extensions to second order spatial accuracy. Several examples motivated by applications in
underbalanced drilling are presented, and the advantages of using higher order schemes are illustrated.
Copyright © 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Modelling and numerical simulation of two-phase flow in pipelines had its origin in the
nuclear energy industry where advanced computer codes like TRAC [1], RELAP [2], and
CATHARE [3] were developed for design and safety studies. However, following the de-
velopment and growth of the petroleum industry, a need evolved for developing dynamic
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computer tools for prediction of multiphase hydrocarbon flow in pipes. On the produc-
tion side, simulator tools like OLGA [4], PLAC [5] and TACITE [6—10] were developed
for design purposes regarding flow of hydrocarbons in production/transport lines. However,
in parallel, there has also been developed a class of simulator tools for multi-phase flow
occurring during exploration drilling and well interventions. Initially, the main drive here,
was the ‘kick’ scenario which can occur while drilling a well in an overbalanced condition.
If a high pressure zone is reached and an uncontrolled gas influx enters the well, immedi-
ate reaction is needed by the well crew to initiate certain procedures to bring the gas influx
safely out of the system. Examples of simulators developed for these purposes are RF-Kick
[11] and SIDEKICK [12,13]. In the 1990s, the underbalanced drilling technology became
more popular. This concept consists of drilling with a mixture of injected gas and liquid.
This technique makes it possible to drill with a well pressure substantially lower than the
formation pressure, which has a positive effect on both operational time and productivity, see
[14]. However, the co-current existence of gas and liquid leads to a highly dynamic system
which calls upon improved simulator tools for training and design. Hence, the simulators de-
veloped for Kick applications were extended to handle the underbalanced drilling conditions,
e.g. RF-Dynaflodrill [15].

Dynamic computer tools for petroleum applications have mainly two objectives: They
should give an accurate prediction of downhole pressure and also predict the magnitude of
the surface/outlet flow rates. The latter is important for separator design and safety issues
and numerical solvers with low numerical diffusion are needed. On the modelling side there
have been different approaches. The two fluid model has been used in some models, e.g.
OLGA and PLAC, while the simpler drift flux model has been used in models like TACITE,
RF-Dynaflodrill and SIDEKICK. The drift flux model use one momentum equation for the
mixture opposite to the two fluid model which uses separate momentum equations. Use of
the drift flux approach simplifies to some extent the closure problem in the sense that mod-
els for the complex interface momentum terms are not needed. However, as the number of
equations is reduced by one when adopting the drift flux approach, an additional equation
has to be supplied. It is common to include a model for gas slippage, which is an empirical
model that describes slippage between phases. In some applications, the drift flux model is
simplified further by excluding ‘sonic waves’. This is done by removing the acceleration terms
in the momentum equation (no pressure wave model). The dynamics in the system are then
mainly determined by mass transport and the forces exerted on the system through friction
and gravity. This is often sufficient for the applications needed.

In addition to the basic equations, a large number of closure laws (sub models) have to
be supplied. This includes complex PVT relations, model for flow pattern description, gas
slippage and pressure losses (friction and gravity). Also dynamic modelling of temperature
development in the pipeline/well and the surroundings should be included. Development of
closure laws is often based on experiments and laboratory work, in addition to more basic
modelling.

The governing equations and the closure laws constitute a complex system of first
order partial differential equations which calls upon a numerical solution. The models are of
hyperbolic nature and include propagation of sound waves and mass (phase volume fraction)
waves. The sonic waves are known to have a much faster propagation than the mass waves
in the order of ten to thousand in magnitude. Hence, explicit schemes have traditionally been
ruled out due to the severe time step restriction induced by the CFL criterion.
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The implicit strategies used for solving the models can roughly be broken into three classes.
One approach has been direct linearization of the basic equations which then have been solved
by a band matrix solver. This approach was used in the first codes developed for the nuclear
industry but the OLGA simulator is also using this approach. The numerical methods used
were of first order accuracy and gave poor results in terms of numerical diffusion. A remedy
for this was to use front tracking of the gas volume waves where e.g. OLGA introduced front
tracking of the gas/liquid slugs.

In a different approach used e.g. by RF-Kick and SIDEKICK, the basic equations were
solved by a predictor—corrector shooting technique although using different approaches for
mass transport. Following this approach, there is no need for direct linearization of the model
equations and the closure laws. Numerical diffusion in the RF-Kick simulator has been reme-
died by local front tracking of the gas volume waves.

Finally, the last approach has been the introduction of Godunov-MUSCL type schemes
with the appearance of the TACITE code. These schemes have their origin within the aircraft
industry where numerical methods of high accuracy and low numerical diffusion are needed.
The accuracy of these schemes rules out the need for local front tracking approaches. However,
the original formulation of these schemes requires a detailed mathematical analysis of the
underlying model including construction of the appropriate Jacobi matrix and corresponding
eigenvalues and eigenvectors. As the basic equations and closure models for multiphase flow
in petroleum applications tend to be very complex [8,9, 16, 17], these constructions have to
be done by numerical means leading to larger numerical costs.

In the following, our intention is to present how ideas taken from the Godunov-MUSCL
type schemes can be used in more simple numerical approaches used within the gas—oil in-
dustry. The MUSCL approach is known to reduce numerical diffusion to a minimum, and
more accurate outlet flow rate predictions are obtained. The implementation of these tech-
niques is simple when compared to the use of front tracking techniques. We have applied the
MUSCL technique in a predictor—corrector shooting method used in the RF-Kick simulator
and also in a newly developed scheme [18] which has some similarities with the OLGA
approach.

Finally, two-phase flow modelling involves two kind of errors. Modelling errors caused by
‘inaccuracy’ in the closure laws and numerical errors caused by the way the basic equations
are discretized and solved. The first has always had high priority and a lot of work and
resources have been spent on developing closure laws as accurate as possible. In this paper,
we focus on the latter source of error and potential remedies for this. The model we have
chosen is the simple drift flux model, since focus is on numerical aspects. In addition, we also
illustrate the difference between using the full drift flux model and the simplified no pressure
wave model.

2. DYNAMIC MODEL

A model describing one-dimensional two-phase flow in pipelines consists of nonlinear par-
tial differential equations describing conservation of mass, momentum and energy for each
of the phases, see e.g. References [19,20]. This model is obtained from cross-sectional av-
eraging of the Navier—Stokes equations and viscous stresses are reduced to empirical flow
regime dependent terms describing wall and interface friction. In addition, the equations
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include complicated terms related to exchanges of mass, momentum and energy through the
internal interface or pipe wall. Volume forces due to gravity are essential for the development
of vertical flow. This model is known as the two fluid model, and for readers interested in
applications we refer to References [4, 5, 10,21-23]. The two fluid model is used in two main
areas. In nuclear reactor plants, focus has been on describing steam/water systems. Examples
of model formulations related to this area can be found in References [21-23]. However, the
two fluid model has also been used to describe hydrocarbon transport in pipelines in relation
to the oil industry. These model formulations are often more complex, due to presence of
more complex fluids. In addition the number of conservation laws are higher. In a drilling
situation one has to track both drilling fluid, produced oil/gas, produced water, drilled cuttings
and also handle the dissolution process of gas versus oil at high pressures/temperatures. In
addition, one has to have good models for the slippage between the phases. An example of a
more complex two-fluid formulation for petroleum production can be found in Reference [4],
but also the formulation presented there is simplified.

The complexity of these models are on of the major reasons why there are so few examples
of use of Godunov-type schemes in this area. Since most Godunov-type schemes are based
on knowing the eigenstructure of the model it has been difficult to work out proper numerical
schemes.

2.1. The drift flux model

The focus of this work is investigation of the accuracy of numerical methods, and we limit
ourselves to consider gas—liquid flow in vertical wells. The model we present is quite sim-
plified. For a more general formulation we refer to Reference [8]. We assume that no mass
enters or leaves the system through the pipe walls, and we neglect mass transfer between the
phases. The simplified mass conservation equations are then written as

0 0
a(kaAPk)‘F a(“kApkUk):Os k=1lg (1)

where [, g represents the liquid and gas phase, respectively, o is the phase, volume fraction,
A is the cross-section area, p is the density and v is the velocity.

The fundamental two-fluid flow model consists of separate momentum conservation equa-
tions for each phase, and includes complicated terms related to phase interaction. It is however
a common practice in two-phase modelling to introduce a mixture momentum phase in order
to omit modelling of momentum interface terms, see e.g. References [7,9, 16]. This results in
the following equation for the mixture phase (drift flux formulation):

0 0 0
EA(O‘HOIUI + ogpqvy) + aA(OCzPIU% + oypgU;) + Aap =—Aq (2)

where p is pressure and g =K + pmixg represents the external forces acting on the fluids; K
represents a friction pressure-loss term and pnixg represents gravitational forces; pmix = (p40 +
pioy) defines the mixture density. We further assume that there is no heat exchange in the
fluid, which makes the energy conservation equations redundant (isentropic conditions).

The governing partial differential equations for two-phase flow are insufficient to com-
pletely describe the physical processes involved. There are more unknowns than equations and
additional closure relations are required. The missing information in the mixture momentum
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equation must be replaced by empirical relations which provides information about phase
velocities and pressure loss terms. In addition, it is necessary to specify thermodynamic rela-
tions, generally derived by assuming a system in thermodynamic equilibrium (PVT models).
It is also necessary to provide physical boundary conditions for the system. In this context,
the flow rates are assumed to be known at the inlet, and pressure is assumed to be specified
at the outlet.

The closure relations usually involve complicated expressions, or they can be given in
tabular form based on experimental data. For computational purposes, we use the following
simple gas slip relation

Uy = COUmix + C‘1 (3)

where vUmix = 0,05 + v;0; defines the mixture velocity and Cy and C; are empirical given
parameters. The friction pressure loss is modelled by the following simple relation:

_ 32 Umix Hmix

K D2

where D is the inner diameter of the pipe and pmix = 50y + ;0 defines the mixture viscosity.
A value of 5x 1072 Pas is adopted for the liquid viscosity, and 5x 107¢ Pas for the gas
viscosity. The equation relating pressure and density for the gas phase is obtained by assuming
an ideal gas law

_Pr
pg_az

where a,~316 m/s is the velocity of sound in the gas phase. The liquid density model is
given by
P~ Po

2
a;

pr=po—+

where constant compressibility is assumed. Here a; =~ 1000 m/s is the velocity of sound in the
liquid phase and pq is the density at a reference pressure py.

The drift flux model can also be simplified further by removing the acceleration terms in
the momentum equation, see Reference [10]. This model will be referred to as the no pressure
wave model. The momentum equation will then be

ja)

0
—p=—K— mix 4
P Pmixg 4)

This simplification eliminates the sonic waves from the model. As mentioned in Refer-
ence [10], most transients of interest in the petroleum industry are related to mass trans-
port effects. If a vertical wall is considered, the pressure distribution is typically dominated
by hydrostatic pressures and eventual wall friction effects. Acoustic waves can occur dur-
ing rate changes or changes in the surface back pressure. However, these waves will only
give quite small pressure disturbances which are damped by viscous effects after a short
while.
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2.2. Characteristics of the model

By assuming a constant cross-sectional flow area, the governing equations for two-phase flow
can be written as a system of conservation laws

ou of

2 5
ot )
where
o p; PV 0
u= %gPyg , f= %gPyVyg , Q= 0
0PIV + Uy Pgly %p10] + Pyt + p —q

These equations can also be expressed in quasi-linear form

M AmD =g (6)
where A(u) is the Jacobi matrix of the flux function versus the conservative variables. Some
details regarding the flux functions are included in Appendix. This system of conservation laws
has been analysed by Théron [24] and Gavage [25]. The model was shown to be hyperbolic
in a physically reasonable region of parameters and three distinct and real eigenvalues were
obtained. Two of the eigenvalues (A; and A3) correspond to rapid sonic waves (pressure
pulses) propagating in the upstream and downstream direction of the fluid flow, while the last
eigenvalue (4,) is associated to mass (phase volume fraction) waves. Gavage showed that the
approximate eigenvalues of the system was 4, =v; —w, A, =v, and /3 =v; + w, where the
sound velocity was approximated by:

V4
w=,|———
O‘gpl(l - COOCg)

She had to assume a constant liquid density and perform some linearization to obtain these
approximate algebraic expressions. Hence, obtaining algebraic expressions for a more complex
drift flux model seems out of range, and numerical methods based on knowing eigenvalues/
eigenstructures must use numerical approximations for obtaining these. The eigenvalues cor-
responding to the pressure pulses are generally 10-100 times larger than the eigenvalue corre-
sponding to the mass transport, i.e. |4;|,|43]>>|42|. Eigenvalues are essential in Godunov-type
schemes, and will be discussed further in Section 3.3.

3. NUMERICAL METHODS

The non-linear and coupled characteristic of the drift-flux model makes it impossible to solve
the equations analytically, and a numerical solution strategy is required. The aim of a nu-
merical solver is to compute accurate and stable approximations of the flow variables (e.g.
pressure, velocity, volume fractions, etc.). Numerical methods replace the continuous problem
represented by Equations (1) and (2) by a finite set of discrete values. These values are
defined on a mesh composed of cells in the (x,z) plane. The pipe section of length [0,L]
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is divided into M segments [x;_i,X;+1/2], where x1, =0 and xp11»=L. We let x; denote
the centres of the segments, and the time levels are denoted #,. The spacing in the x and ¢
variables is denoted Ax and At.

A numerical method is explicit if the discretized flow variables at the previous time level
(t,) are used to calculate the flow variables at the new time level (f,.;). The time step is
limited by the CFL condition

Ax
AIS rax( 7 7a)

In many drilling situations, such as gas-kick scenarios and underbalanced drilling operations,
the dynamic behavior lasts in order of hours. The CFL condition will therefore imply large
computational time if explicit methods are used to simulate these situations.

Fully implicit methods are not limited by the CFL condition, but they have the disadvantage
of smearing out discontinuities. The methods described in this section are semi-implicit in
the sense that pressure calculations are based on implicit solution techniques, and the mass
transport is treated explicit. The time step is thus limited by a CFL condition depending on
the mass transport signal (Ax/4;). Some of the solution details are thus sacrificed to increase
computational efficiency.

The rest of this chapter is organized as follows: First, a numerical method based on a
finite element approach is presented. This method results in an integration of the momentum
equation along characteristics. The second method is a predictor—corrector shooting technique,
and the last method is a semi-implicit version of the conservative Roe-scheme, see References
[9,26,27]. The extension to second order spatial accuracy is discussed at the end of the
chapter.

3.1. A finite element approach

In this section the solution strategy for a recently developed semi-implicit method [18] is
presented. The solution process requires a rearrangement of the governing equations, which
involve introduction of total mass flux F' =A4(op,v; + 04p,v,), and centre of mass velocity
UC(,m:F/Apmi,&. To simplify future calculations, we also redefine the friction factor by the
relation K — KF'. By adding the mass conservation equations, we obtain the following equation
for conservation of total mass:
op OF
Ak— + —=0 7
“or T 7
where Kk = 0ppuix/0p. Following the outline in Reference [18], the momentum equation (2) is
simplified as

OF  venF  0p s
oF AP L RF = _dp.
a T T TAu T Puixd ®)

Here, terms involving (v; — v,) is neglected.
To proceed, we define a test function f; which is constant over segment #, and zero else-
where. We then integrate Equation (7) with the test function f8; over the space and time strip

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:723-745



730 R. J. LORENTZEN AND K. K. FIJELDE

Q=[0,L] x [ty,ty11]. Integration by parts yields
L R tht1 .
[ upueptyax— [ paxLraas [Tipra- [ FPan-o
0 " 1) 6t t QO @x

which is reduced to an equation of the form

VP I = ) = ©)

where v¢, v? and v¢ are coefficients given from the integration.
We then multiply Equation (8) with a space—time test function /5. Integration by parts over
Q yields

/ [FRI dx + /"Al[ucomFﬁ]g dr — /QF([ft + Veom e — BK)dQ

n

+ AP paa= [ Apmsaao (10)
Q ox Q

We then take the test function f to fulfill the adjoint equation
ﬁt + Ucomﬂx =0

which gives a test function on the form
Bx,t) = B(x — Veom(t — tns+1))
We then define the following left and right basis functions
1
Pr(x,t) = 7 [(xivr2 = x) + Veom(t = tus1)]

and

Bas,0) = 06— %i42) ~ Dt — b1

where X;_1/2 + Veom(? — fnt1) <X <Xjt1/2 + Veom(t — t41) and f, <t <t,,;. The centre of mass
velocity is evaluated at the cell boundaries at time z,. We evaluate (10) by applying S equal
to the left and right basis function respectively on the domain specified above, and zero
elsewhere. The following two equations are then obtained:

GE L P, G =8 (11)
ERFI ) + Erpiily + Sl = E (12)
n+1

where p!” 1 » and p!’ |, are pressures evaluated at the left and right boundary, respectively.
The coeflicients in Equations (11) and (12) follow from integration of (10).

We can now eliminate p’™' from Equations (11) and (12) by using Equation (9). The
following equations are then obtained:

SR+ it + G h = (13)
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and
SR+ Erpiin + Sl = (14)
Using Equations (13) and (14), Fl.”fl}z and Fl’fl'/lz can be expressed in terms of p'' ,, and
P?jrrll/z
=0 pitl il pls + i (15)
L =Py + e Pl s + i (16)

We assume that the flux and pressure are continuous at the cell boundaries which gives the
following linear system

ajo P, v aa P, taapih,=b, j=1...,M—1 (17)

This system, together with the physical boundary conditions, forms a tridiagonal matrix which
is solved using direct substitution. The coefficients in Equations (13)—(17) are functions of the
coefficients in Equation (9) and Equations (11)—(12). When the pressure values are known,
the left and right fluxes are calculated by using Equations (15) and (16). Equation (9) is then
used to calculate the average cell pressure p’*'.

The next task is to update the mass distribution, based on pressure and flux at the new time
level. This procedure starts at the inlet, where mass rates are given by the physical boundary
conditions. The mass distribution is then updated sequentially until the outlet is reached:

1. Temporary velocities v}, ,, k=1, g, are calculated by utilizing Equation (3), the down-

stream flux £}, and the old volume fraction.

2. The mass in each cell (M ;) is updated for each phase according to
Mﬁl :le,i + Atfz,ﬁl/z - Atf/’:}:il'l/z’ k=1lg

where the downstream flux for each phase (f%;y12) is composed by using the interme-
diate velocity and the upstream volume fraction and density.

3. The new masses are used to calculate final volume fractions ot}gl, k=1,g. Step 1 is then
repeated, and final velocities are determined.

3.2. A predictor—corrector shooting technique

A predictor—corrector approach makes it possible to solve Equations (1) and (2) without direct
linearization of the governing equations and the closure relations. The method described in
this section was originally developed to handle gas-kick situations [11], but can also be used
for general dynamic two-phase flow simulations. We give a brief description of the solution
strategy.

The no pressure wave model is applied here, i.e. the acceleration terms related to the sonic
waves are neglected from the momentum equation:

0
~P="4 (18)

The errors introduced by this approximation are discussed in Section 4.3. The solution algo-
rithm is initiated by making a guess for the inlet pressure. Mass rates at the inlet are given
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by the physical boundary conditions. A predictor—corrector algorithm is then used to solve
Equations (18) and the mass conservation equations (1), which determines the downstream
flow variables in the first cell (see the description below). This also determines the upstream
variables for the next cell, by imposing continuity of pressure and mass rates over the cell
boundary. This procedure is sequentially repeated for each cell until the outlet is reached. The
calculated outlet pressure is then compared to the pressure given by the physical boundary
condition. The inlet pressure is iterated until the calculated outlet pressure has converged. It
should be mentioned that a similar approach was pursued by Nickens [12], although he did
not neglect the pressure pulses.

We now give a short description of the predictor and corrector steps in the algorithm. The
predictor step starts by using a discretized version of Equation (18) to calculate a temporary
downstream pressure at the new time level in cell i (based on old variables):

p?ﬂ/z:p?j]l/z — Axq] (19)
The known upstream pressure is either given by the updated solution in the upstream cell, or
by the guess made for the inlet pressure. The average cell pressure is then given by
. Piap T P?jll/z
bi=—">%H
The updated pressure is then used to calculate the mass distribution. To proceed, a guess

is made for the downstream mixture velocity, v and the temporary mass in cell i is
calculated by

(20)

*
mix,i+1/2°

Mg =M + Atf/?,ﬁl/z —Atfiip k=Lg (21)

where the downstream flux is a function of vy, ., ,. The following volume balance equation

is then solved by iteration, which determines the downstream mixture velocity:
g(U:;lix,i+l/2) = Vi*(U:qix,m/z) —AAx=0 (22)
where
M M,
pi(p*) — py(p*)

The corrector step consists of repeating the steps (19)—(22) using updated flow variables.

This procedure is continued until the flow variables in the cell have converged. The variables

n+1 n+1 n+1 n+1 n+1 :
Pl Pis Vnixiviyoo M and Mg are then determined.

Vi (Umix, i+1/2 )=

3.3. A Godunov-type scheme

The numerical approach described in this section departs from the schemes outlined in the
previous sections, as the system of conservation laws (5) is solved in a fully coupled manner.
A conservative explicit finite volume scheme for Equation (5) has the form

At
Uit =0 - A Fe — Elip) + AQy (23)

where Fi'_fu P is an approximation of the flux f(u(x,t)) at X110, and Q?=q(U}). For an
introduction to numerical schemes for conservation laws, see e.g. References [28—30]. We
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propose a scheme based on a semi-implicit approach described by Faille ef al. [9], and the
numerical Roe scheme, see References [26,27]. The traditional Godunov scheme involves
the exact solution of a large number of Riemann problems, and is a complicated and time
consuming process. Simplification of this method was therefore introduced by the development
of approximate Riemann solvers. Roe’s approximate Riemann solver is based on the solution
of the linearized Riemann problem

u! for x <xiy12
M AUy <0, uw0)- ) (24)
ot ox U, for x>xip10

where the matrix A(U” U?, ;) is an approximation of the Jacobi matrix, and must satisfy the
following conditions:

(1) A(U” U7, ) has only real eigenvalues and is diagonalizable.
(ii) f(U,H) f(unH= A(U” Uy Uz, = Up).
(iii) A(U" U ))—A(u) as U |, U —u

i+1°
Condition (i) ensures hyperbolicity, condition (ii) is needed to achieve conservation across
discontinuities and condition (iii) ensures consistency with the exact Jacobian. The numerical
flux for the Roe scheme is then given by

1+1/2 Z(f(Un) + f(U1+l -2 ‘Al+1/2|(Ul+l U?) (25)
where A’ - /Z—A(U” U7, ;) and |A”+1 5| is the matrix which has the same eigenvectors as
A, 12> and eigenvalues equal to the absolute values of the eigenvalues of Ar i41/2- In order to

construct a Roe matrix A, we first define the Jacobian A = AU}, ), where U}, = =1(Ur+
U7, ;). This matrix satisfies (i) and (iii). In order to make it satisfy (ii), we follow the
approach described in References [16,27]. We first decompose the Jacobian A as A=RAR!,
where R is the right eigenvector matrix, and A is the matrix havmg the eigenvalues of A
at its diagonal. Next, we determine a diagonal matrix A such that RAR"'AU = Af, where
AU=U!, - U} and Af =f(U? ) — f(U}). The Roe matrix A is then defined by
RAR™! if Ur#U7,
A=Awur =9 ___ (26)
RAR™' ifU'=U%,

An implicit version of the numerical scheme (23) is obtained (see Reference [9]) by evalu-

ating the numerical flux given by Equation (25) at the new time level: F!, = F(U/"', Uj/!).

We also evaluate the source term at the new time level: Q7' =Q(U"""). These expressions
are then linearized by using a first order Taylor expansion with respect to U} and U7,

n n aF(U i ) n n
F(U/ Ui ~ F(UE, &o+——ﬁﬁﬂ4U“ u)
JF(UL UL )
+ our ) +1 (Ulrll U1+1 (27)
i+
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QMUY i1 _
Q= QU + XD wrt - up) (28)
By assuming that \Al 12| 1s constant, the expressions in Equation (27) becomes
JF(U?, U .
Tﬂ 2 A + |Al+l/2|) (29)
JF(UL, U 1., .
W]H E( f— Al (30)
i+

where A7 =A(U?).

Faille et al. [9] proposed a way to modify this scheme in order to keep the accuracy
on the slow wave (4,), while maintaining implicit treatment of the fast waves (4, and 13).
Equations (29) and (30) are replaced by

OF(U, U”

oU? - (An |A,+1/z|) 31)
RULUL) L
Tﬂ“ ~ (Al |Az+1/z\) (32)

where A has the same eigenvectors as A, but the eigenvalues are replaced by /"Tl =, )tz =0

and 13 = /3. The matrix A is obtained in the same manner. The scheme is then divided into
two stages

1. An explicit step
. At ; " .
oU; = ——AX(F(Ul-, ) —FWUL_,U)) + ArQ;

2. An implicit step which will stabilize the explicit solution

A n

TAx [AL, + |A, 1211001 + (|A,+1/2\ + \A 1) — AtDQ
At .

+2A t+1 |A1+1/2|]5U1 1_5U

where U, =U""" —U”, 1 is the identity matrix and DQ} = 0Q(U?)/oU".

The application of the numerical scheme at the boundary cells i=1 and M, requires the
numerical flux values Fy, and Fy;,;. These fluxes cannot be calculated directly, as U, and
Uy, are outside the computational domain. The information which is not given by the phys-
ical boundary conditions must be supplied by additional information. We have used a ghost
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cell technique, which is based on defining external cells (ghost cells) outside the computa-
tional domain. The values in these cells are calculated by combining the physical boundary
conditions, and information obtained from the wave structure of the Riemann problems at the
boundaries, see Reference [31].

3.4. Second order schemes

The high amount of numerical diffusion in first order schemes makes it impossible to re-
construct sharp fronts accurately. It is on the other hand well known that classical higher
order linear schemes produce spurious oscillations in the vicinity of large gradients. This has
lead to the introduction of fotal variation diminishing (TVD) schemes. TVD schemes are
of high order, and have the property of non-increasing total variation. Unphysical oscilla-
tions are thus avoided. The methods were originally developed for scalar one-dimensional
problems, but a large number of successful applications to systems of conservations laws
exist [28,30]. In this paper we use a slopelimiter, or MUSCL (abbreviation for Monotone
Upstream-centred Scheme for Conservation Laws) technique, which fulfills the TVD condi-
tion. The MUSCL/slopelimiter method was first introduced by van Leer [32,33], and is based
on a piece-wise linear reconstruction of the cell averages.

We have chosen to represent the cell averages in terms of the primitive variables
p=(p,%y,v;). A linear reconstruction is then given by

Pi(x)=P; + (x —x)Ai;,  x€[xi_1)2,Xi11)2] 33)

where A; denotes a suitable (limited) slope constructed from the cell averages P;.

There exists a variety of limiters which can be used to calculate the slopes A;. MINMOD
is the most diffusive limiter, while SUPERBEE is known to be over-compressive. We use
the smooth VANLEER limiter, which lies between MINMOD and SUPERBEE. For further
details on TVD methods and MUSCL/slopelimiter type high order methods, we refer to
References [28—-30].

The numerical methods described in Sections 3.1-3.3 use the extrapolated primitive vari-
ables at the cell boundaries for evaluation of the fluxes. The extrapolated variables are
given by

Ax Ax

TAi’ Piiip - =P+ —-A

P_ip =P~ 3

see Figure 1.

The finite element approach and the predictor—corrector shooting technique use the extrapo-
lated values for pressure and volume fraction (ot;—12, 4, %it1/2,—, Pi—1/2,4> Pi+1/2,—) to evaluate
the mass transport fluxes. The velocity at the boundaries is found by iteration of the mass
conservation equations. The Godunov-type scheme is extended to second order by using the
extreme values U,y and Uy in the numerical flux:

Foip =1 (Uiin =) + (U2 0)) = AU+ — Ui, -) (34)

where A,-H/z :A(U,-+1/2,_,U,»+1/2,+). The extreme values U,y + and U, — are calculated
by converting the extrapolated primitive variables.
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Pi(x)

Pi+1/2.-

Pi— 12+

0 Ax/2 Ax

Figure 1. Piece-wise linear reconstruction of the primitive variables in cell i.

4. NUMERICAL RESULTS

The examples in this section are motivated by dynamical effects present in underbalanced
drilling operations. We have chosen test scenarios where gas and liquid are injected at the
bottom of the well. Gas is injected in order to obtain reduced hydrostatic pressure, leading to
an underbalanced condition. The main variables of interest in such operations are the bottom
hole pressure and the outlet flow rates. Control of the bottom hole pressure is important in
order to maintain the underbalanced condition, and the prediction of the outlet flow rates
is crucial for proper separator design. We wish to illustrate how numerical diffusion affects
prediction of these variables and show the advantage of using second order schemes. The well
configuration consists of a 1000 m deep vertical well with a 0.1 m inner diameter. The outlet
pressure is kept constant equal to 6bar. The grid length is 20m and the time step is 1s. In the
following, the finite element approach is abbreviated FE, and the predictor—corrector shooting
technique is abbreviated PCS. We have chosen to use the second order Godunov type scheme
as a reference case. This scheme is then compared with the first and second order versions of
the predictor corrector shooting technique and the finite element approach. One should expect
that the first order version of all the schemes will basically give the same results, since all of
them will typically be first order upwind schemes in this case. Hence, we have not included
results for the 1st order Godunov scheme. The intention of the comparison is to show that
the first order versions of the simpler predictor scheme and FE approach have problems with
numerical diffusion when comparing with the more accurate results obtained by the second
order Godunov scheme. However, we see that more accurate results can be obtained by using
the slope limit approach in these simpler/traditional schemes. The second order versions of
these schemes give results that are quite comparable with the second order Godunov scheme.

4.1. Example 1

We consider a well which is initially filled with stagnant liquid. Gas and liquid are then
injected at the bottom of the well. The flow rates are increased to 7.5 kg/s for liquid and
0.05kg/s for gas during a 10s period. For simplicity, a no-slip condition is used, i.e. Co=1 and
C; =0 in Equation (3). The no-slip condition is physical reasonable when the dispersed bubble
flow pattern is present. Figures 2—4 show the bottom hole pressure and the outlet flow rates
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Figure 2. Bottom hole pressure as function of time in example 1.
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Figure 3. Outlet gas mass flow rate as function of time in example 1.
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Figure 4. Outlet liquid mass flow rate as function of time in example 1.
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when the different numerical schemes are used. Figure 5 shows the gas volume distribution
at =250, 500, 750 and 1000 s.

The injection of gas in the drillstring causes the bottom hole pressure to decrease. The
gas expands while it propagates towards the surface, and forces the liquid in front of the gas
out of the well. Hence, a sharp peak in the outlet liquid rate is seen just prior to the gas
is reaching the surface, see Figure 4. We observe that the second order schemes predict a
quite sudden presence of gas at surface, see Figure 3. The first order schemes have problems
with numerical diffusion which tend to smear out the sharp transition zone between the two
phase mixtures and the liquid region in front of the migrating gas, see Figure 5. Hence, they
will predict gas at surface at an earlier time, and the final steady state rates will be reached
later. We also observe that the second order schemes are able to reconstruct the sharp peak
in the liquid rate, while the first order schemes predict a much lower maximum value of this
peak. This example shows that the second order version of the predictor corrector scheme and
the FE approach give results that are quite comparable with the second order version of the
Godunov scheme. Implementing slope limiter techniques in these simpler schemes, seems to
have a very positive effect on reducing numerical diffusion related to mass transport. There
is a small difference in the estimated steady-state bottom hole pressure, which is due to the
different approaches used to treat the numerical boundary conditions. The numerical differences
are however relatively small when compared to model error in the closure relations, see e.g.
Reference [34].

In order to illustrate the relationship between the number of cells and the numerical dif-
fusion, we show the predicted mass flow rates at the outlet when the spatial grid length
is reduced from 20 to 2 m. The simulation is done using the first and second order finite
element scheme. Figure 6 shows the simulated outlet rates of gas and liquid. The figure
present the difference in the predicted results when using a first order scheme versus a second
order scheme when using a grid length of 20m. It also shows that maximum peaks in the flow
rates are predicted to be even higher if we reduce the cell length from 20 to 2 m (using the

0.7 0.7
— Godunov 2nd order — Godunov 2nd order
--- PCS 2nd order --- FE 2nd order

0.6 PCS 1st order 0.6 FE 1st order
c 05 c 05
2 S
S S
[ [
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© ©
G o2 S 02

0 - 0 R
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Figure 5. Gas volume fraction in example 1. The figures shows the distribution of gas in the well at
times ¢ =250, 500, 750 and 1000s. The first order scheme smears out the gas distribution.
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Figure 6. Outlet gas rate (left) and liquid rate (right) versus time in example 1.
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Figure 7. Bottom hole pressure as function of time in example 2.

second order FE scheme). This case also shows the importance of choosing a proper discretiza-
tion with respect to the accuracy required. A smaller grid will increase the accuracy of the
results. We observe that for the fine grid calculations, some oscillations can be observed. These
oscillations occurring at approximately 15 min are a consequence of the dynamics generated
by the sudden rate variations at the outlet. We note that more non-diffusive fronts can also
be obtained by choosing a less diffusive slope limiter, e.g. SUPERBEE.

4.2. Example 2

This example is identical to example 1, except that the slip parameters Cy=1.2 and C; =0.55
are used. These parameter values are approximations of the parameters used to calculate the
gas velocity in slug flow. Figures 7-9 show the bottom hole pressure and the outlet flow rates.
Figure 10 shows the gas volume fraction at t =250, 500 and 750s. We see that the gas phase
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Figure 9. Outlet liquid mass flow rate as function of time in example 2.

is moving with a higher speed compared to example 1. The results are again satisfactory as the
predictor—corrector shooting technique and the finite element approach are able to reconstruct
the results obtained by the Godunov-type scheme. The irregularity in the liquid mass flow
rate in the Godunov scheme, see Figure 9, is due to numerical inaccuracies related to the
transition between two- and one-phase flow. The increased liquid velocity is amplifying this
problem when compared to example 1.

4.3. Example 3

As a final example, we wish to investigate the ability to simulate a complex scenario caused
by a shut down of the pumps. This leads to a situation where the injected gas migrates towards
the surface, and liquid is forced in the downward direction (countercurrent flow). We use the
same values for the slip parameters as in the previous example.
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Figure 10. Gas volume fraction in example 2. The curves represent ¢ =250, 500 and 750 s.
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Figure 11. Bottom hole pressure and gas mass flow rate at the outlet as function of time in example 3.

The well is initially filled with stagnant liquid. The injection rates are then increased to
7.5 kg/s for liquid and 0.15 kg/s for gas during a 10 s period. The injection rates are kept
constant in 200 s before the injection stops. The liquid rate at the outlet is now dropping to a
value close to zero, see Figure 12. This leads to reduced wall friction which gives a sudden
reduction in the bottom hole pressure at this time, see Figure 11. The sudden variations of
mass flow rates at start-up and shut-down generate pressure pulses which are responsible for
temporary oscillations of the flow variables. However, the oscillations are quickly damped by
the frictional forces, and the amplitude is relatively small, see Figure 12 (right). The pressure
pulses play therefore a minor role in these examples, and use of the no pressure wave model
will not lead to large errors in e.g. an underbalanced drilling situation.

The injected mass flow rates are shut down in 1000s, and during this period gas expands
and migrates towards the surface. This gives a decrease of the bottom hole pressure, while the
liquid mass flow rate in front of the gas increases. The gas reaches the outlet at approximately
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Figure 12. Outlet liquid mass flow rate as function of time in example 3. The right plot shows oscillations
occurring in the vicinity of sharp gradients.
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Figure 13. Gas volume fraction in example 3. The curves represent =500, 1000 and 1500 s.

17 min, and the expansion of gas is now forcing the liquid in a downward direction. The
injection of liquid is resumed after 1200s, and the rate is increased to 2kg/s. The gas is now
transported out of the well, and the hydrostatic pressure increases. Figure 13 shows the gas
volume distribution at =500, 1000 and 1500 s.

5. CONCLUSIONS

The focus of this paper has been to show how traditional and simple numerical methods
for simulation of multiphase hydrocarbon flow in pipelines, can be extended to second order
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spatial accuracy. We have given an outline of modelling of one-dimensional two-phase flow
in pipelines and wells, with emphasize on the drift flux model and the no pressure wave
model. In addition, we have presented the basic solution strategies for the numerical methods
discussed herein.

There is a need for accurate and reliable tools for prediction of hydrocarbon flow in
pipelines and wells. We have shown how the non-diffusive MUSCL technique, originally
developed to achieve higher order of accuracy in Godunov’s method, can be integrated in
simple semi-implicit schemes following the finite element technique and predictor—corrector
shooting technique. These methods do not require numerical calculation of the Jacobi matrix
and the corresponding eigenvalues and eigenvectors, and complex boundary treatment is not
necessary. The MUSCL technique gives an overall reduction of the numerical diffusion, and
complicated front tracking remedies are avoided.

We have made a rough estimate of the computational cost needed by the different numeri-
cal approaches, and conclude that the finite element approach has lowest cpu consume. The
predictor—corrector shooting technique is somewhat slower due to the time consuming itera-
tions needed on a local (within each box) and global (in order to match the outlet pressure)
level. The traditional Godunov scheme suffers from time consuming numerical calculations
of the Jacobi matrix, and can therefore not match either the finite element approach or the
predictor—corrector shooting technique. These considerations substantiate the benefits of incor-
porating the MUSCL technique in more simple/traditional schemes.

From a modelling point of view, we have shown that the simplifications introduced by the
no pressure wave model are of minor importance when the transients of interest are related
to transport of mass (e.g. underbalanced drilling operations). The oscillations introduced by
the pressure pulses have a small amplitude, and are only present in short periods following
sudden rate variations.

We have presented several relevant examples where the Godunov-type method is compared
with first and second order versions of the finite element method and the predictor—corrector
shooting technique. The results show that numerical diffusion is reduced, and the second order
versions of the schemes produce almost identical results.

APPENDIX

In this appendix we show some of the details in the flux functions written in terms of
conservative variables. As shown in Section 2.2, the governing equations for two-phase flow
can be written as a system of conservation laws

Ju n of

a a1

The flux functions in terms of conservative variables can be written

_ (1 = Co)pius + Couyus — Crpjus
(1 = Cy)pi + Couy + Coup

A

uy(C1p; + Cous)

f2= (1 = Co)pi + Couy + Cou
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_ ur(Crp; + Cous )? ui((1 — Co)pus + Courus — Crppun)® | pragus
((1 = Co)pi + Couy + Cour ) ((1 = Co)piuy + Coui + Coupuy )? p1— up

VE

The flux functions and the corresponding Jacobi matrix A(u) are very complex, and we have
not found it reasonable to go into more details. In fact, in order to calculate the eigenvalues
of A(u), it is necessary to express the hyperbolic system in terms of primitive variables

ov ov
AE +Bafc

where V is a vector containing physical variables. The eigenvalues then satisfies the following
equation

det(B — JA)=0

Due to long calculations, this analysis is not included here, but more details can be found
in References [24,25]. The closure laws that have been used in this paper are very simple
compared to what is used in practice. Both the slip relation and the density models are usually
much more complex. This would complicate the analysis even more.
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